How Amphibious Plants Rewired a Gas Exchange Pathway to Survive in Water
Just as humans cannot breathe underwater, the tiny pores of plants can't exchange air underwater.
Just as humans cannot breathe underwater, the tiny pores of plants can't exchange air underwater.
Jason McLellan, a structural biologist at The University of Texas at Austin, is being honored today with the announcement of two highly prestigious awards—the National Academy of Sciences (NAS) Award in Molecular Biology and the Norman Hackerman Award in Chemical Research from the Welch Foundation.
In a first for the genetic toolset known as CRISPR, a recently discovered protein has been found to act as a kind of multipurpose self-destruct system for bacteria, capable of degrading single-stranded RNA, single-stranded DNA and double-stranded DNA. With its abilities to target so many types of genetic material, the discovery holds potential for the development of new inexpensive and highly sensitive at-home diagnostic tests for a wide range of infectious diseases, including COVID-19, influenza, Ebola and Zika, according to the authors of a new study in the journal Nature.
Antibiotic-resistant bacteria are a global health threat and killed an estimated 1.27 million people in 2019. The overuse of antibiotic medication is often blamed for creating these deadly pathogens, but now scientists at The University of Texas at Austin have found a new contributor: bacterial swarms that create ideal breeding grounds to evolve antibiotic resistance, even in the absence of antibiotics. The scientists' findings suggest a potential chink in bacteria's armor that could offer new ways of reducing antibiotic-resistant infections by using a combination of already existing drugs.
A team of 12 undergraduate students at UT Austin received top awards at the International Genetically Engineered Machine (iGEM) Competition, including placing in the top 10 overall in the undergraduate category—the only team from the U.S. to do so.
The Teaching Excellence Award in the College of Natural Sciences seeks to promote and recognize outstanding teaching in the college by honoring faculty members who have had a positive influence on the educational experience of our students.
Nearly two years after COVID-19 vaccines entered widespread use, featuring technology from researchers at The University of Texas at Austin, the Cockrell School of Engineering and the College of Natural Sciences have launched Texas Biologics, a cross-disciplinary effort made up of world-renowned faculty members and researchers working across all areas of therapeutics.
This past spring, the College of Natural Sciences invited our University of Texas at Austin faculty, staff and students to send in the top images from their research for our Visualizing Science competition. The images they produced nourish both the mind and the soul, offering not only food for thought but a feast for the eyes as well.
Human metapneumovirus (hMPV), a virus that infects the upper and lower respiratory systems—leading to bronchitis and pneumonia in some patients—could soon meet its medical match. A scientific team in Texas, in collaboration with biotech companies, has made recent breakthroughs in understanding the virus, and their efforts could lead to everything from the first-ever vaccines against hMPV to new, highly effective therapeutics.