Button to scroll to the top of the page.

News

From the College of Natural Sciences
New Era at UT Austin Begins for Famous Long-Term Evolution Experiment

New Era at UT Austin Begins for Famous Long-Term Evolution Experiment

Jeff Barrick, director of the Long-Term Evolution Experiment, examines a dish of E.coli bacteria from the LTEE. Credit: Nolan Zunk/University of Texas at Austin.
The Long-Term Evolution Experiment began back when a dozen eggs cost 65 cents, the film Rain Man topped the box office and George Michael's song "Faith" ruled the pop charts. The bacteria central to this long-running experiment—descendants of E. coli that were plucked from the wild and have spent some 75,000 generations in captivity—now live on the University of Texas at Austin campus.
Virus Discovery Offers Clues About Origins of Complex Life

Virus Discovery Offers Clues About Origins of Complex Life

Eukaryotic cells. Credit: iStock.

Researchers from The University of Texas at Austin report in Nature Microbiology the first discovery of viruses infecting a group of microbes that may include the ancestors of all complex life. The discovery offers tantalizing clues about the origins of complex life and suggests new directions for exploring the hypothesis that viruses were essential to the evolution of humans and other complex life forms.

Students Share Passion for Science at Undergraduate Research Forum

Students Share Passion for Science at Undergraduate Research Forum

Each spring, the College of Natural Sciences holds its annual Undergraduate Research Forum, and last month's event showcased over 250 individual and team research presentations. Faculty, alumni, staff, graduate student and industry judges examined the myriad ways student researchers made progress in their research. 

Undergraduate Research Forum 2022
Dried Bacteria Could Revolutionize Testing, Laboratory Science

Dried Bacteria Could Revolutionize Testing, Laboratory Science

When you think of the type of labs driving biomedical discoveries, you may envision beakers and test tubes filled with a rainbow of chemicals, where much of the magic of scientific experimentation takes place. However, those chemicals are expensive. Pure forms can be difficult to manufacture, ship and store, and they often have to be ordered in very large quantities, which creates barriers to scientific experimentation and advancement.

A New Way to Disarm Antibiotic Resistance in Deadly Bacteria

A New Way to Disarm Antibiotic Resistance in Deadly Bacteria

An antibiotic resistant bacterium (Klebsiella pneumoniae) is treated solely with the last-resort antibiotic imipenem (left); and with a combination of imipenem and a DsbA inhibitor, causing it to rupture and die (right). Image credit: Nikol Kadeřábková.

Scientists think they may have uncovered a whole new approach to fighting antibiotic-resistant bacteria, which, if successful, would help address a health crisis responsible for more deaths every year than either AIDS or malaria.

As Cryo-EM Capabilities Expand, Cool Science at UT Gets a Boost

As Cryo-EM Capabilities Expand, Cool Science at UT Gets a Boost

David Taylor with the Glacios cryo-EM. Photo credit: Vivian Abagiu.

Imagine biological and chemical imaging tools so advanced that they are able to show the molecular details of a virus as it attaches to and enters cells, or the alignment of vanishingly tiny crystals at an atomic level so as to lend insights for new solar energy technology.

Simulation Reveals How a SARS-CoV-2 ‘Gate’ Opens to Allow COVID Infection

Simulation Reveals How a SARS-CoV-2 ‘Gate’ Opens to Allow COVID Infection

Despite more than a year and a half of research, there are still many unknowns about how the virus that causes COVID-19 infects human cells. A deeper understanding could lead to new treatment approaches.

'Last Resort' Antibiotic Pops Bacteria Like Balloons

'Last Resort' Antibiotic Pops Bacteria Like Balloons

A 70-year mystery has finally been solved and the solution could help in the fight against antibiotic resistant bacteria. A new study led by researchers at Imperial College London, and including UT Austin's Despoina Mavridou, reveals that colistin, a last resort antibiotic "punches holes in bacteria, causing them to pop like balloons." Published i...
Our Immune Systems Blanket the SARS-CoV-2 Spike Protein with Antibodies

Our Immune Systems Blanket the SARS-CoV-2 Spike Protein with Antibodies

An analysis of blood plasma samples from people who recovered from SARS-CoV-2 infections shows that most of the antibodies circulating in the blood -- on average, about 84% -- target areas of the viral spike protein outside the receptor binding domain (RBD, green), including the N-terminal Domain (NTD, blue) and the S2 subunit (red, yellow). Illustration credit: University of Texas at Austin.

The most complete picture yet is coming into focus of how antibodies produced in people who effectively fight off SARS-CoV-2 work to neutralize the part of the virus responsible for causing infection. In the journal Science, researchers at The University of Texas at Austin describe the finding, which represents good news for designing the next generation of vaccines to protect against variants of the virus or future emerging coronaviruses.

Black and Latinx Advocacy Council and CNS Announce Aspire Award Winners

Black and Latinx Advocacy Council and CNS Announce Aspire Award Winners

For more than a decade, the Aspire Awards have provided an occasion for faculty, staff and students to recognize undergraduate leaders in the College of Natural Sciences. The event celebrates undergraduate students from underrepresented groups in the sciences, recognizing their achievements in research, service and leadership. This year, 25 students were given Aspire awards in several categories. The event is a collaboration between the college's Office of Undergraduate Education and the student-led Black and Latinx Advocacy Council.