Button to scroll to the top of the page.

News

From the College of Natural Sciences
Sodium-based Material Yields Stable Alternative to Lithium-ion Batteries

Sodium-based Material Yields Stable Alternative to Lithium-ion Batteries

Scientists at the University of Texas at Austin have developed a new sodium metal anode for rechargeable batteries (left) that resists the formation of dendrites, a common problem with standard sodium metal anodes (right) that can lead to shorting and fires. Images were taken with a scanning electron microscope. Image credit: Yixian Wang/University of Texas at Austin.

University of Texas at Austin researchers have created a new sodium-based battery material that is highly stable, capable of recharging as quickly as a traditional lithium-ion battery and able to pave the way toward delivering more energy than current battery technologies.

Chemists’ New Effort Aims to Optimize Materials by Exploiting their Defects

Chemists’ New Effort Aims to Optimize Materials by Exploiting their Defects

A multi-university team involving Sean Roberts of The University of Texas at Austin will receive National Science Foundation support to establish the NSF Phase 1 Center for Adapting Flaws into Features (CAFF) at Rice University. The Center's goal is to exploit chemical defects that show the potential for unique reactivity to optimize the structural and electronic properties of materials.

3D Printing with Visible Light Gets a Speed Boost

3D Printing with Visible Light Gets a Speed Boost

3D printed objects made (from left) with blue, green and red light. Photo courtesy Lynn Stevens.

A team of University of Texas at Austin researchers led by chemistry assistant professor Zachariah Page demonstrated a fast and precise way to 3D print using visible light.

Tiny Insects Provide Inspiration for New Biomaterials

Tiny Insects Provide Inspiration for New Biomaterials

Oncometopia hamiltoni leafhopper insect. Photo by Alex Wild, used with permission.

They may be tiny, but leafhoppers have a super power: they secrete a substance that makes their bodies water-repellant and anti-reflective, which may help them blend in with their surroundings and escape surface tension. Symbiotic bacteria living in the leafhoppers appear to assist in producing the substance and its soccer-ball-shaped nanostructures called brochosomes, but the process is something of a mystery.

There's a Sky Above the Sky: Astronaut Scholar Teddy Hsieh Takes Aim

There's a Sky Above the Sky: Astronaut Scholar Teddy Hsieh Takes Aim

Photo credit Cathy Le.

CNS Career Services advises students to keep resumés to one page, but Teddy Hsieh deserves two.

Allan MacDonald Wins Wolf Prize in Physics

Allan MacDonald Wins Wolf Prize in Physics

Allan MacDonald, a professor of physics at The University of Texas at Austin, has received the 2020 Wolf Prize in Physics for his groundbreaking work in a field known as twistronics, which holds extraordinary promise to "lead to an energy revolution," according to the Wolf Foundation announcement today.

Researchers Discover New Way to Split and Sum Photons with Silicon

Researchers Discover New Way to Split and Sum Photons with Silicon

A team of researchers at The University of Texas at Austin and the University of California, Riverside have found a way to produce a long-hypothesized phenomenon—the transfer of energy between silicon and organic, carbon-based molecules—in a breakthrough that has implications for information storage in quantum computing, solar energy conversion and medical imaging. The research is described in a paper out today in the journal Nature Chemistry.

Rethinking Brain-Inspired Computing from the Atom Up

Rethinking Brain-Inspired Computing from the Atom Up

If you wanted to deliver a package across the street and avoid being hit by a car, you could program a powerful computer to do it, equipped with sensors and hardware capable of running multiple differential equations to track the movement and speed of each car. But a young child would be capable of doing the same task with little effort, says Alex Demkov, professor of physics at The University of Texas at Austin.

Twisted Physics: Magic Angle Graphene Produces Switchable Superconductivity

Twisted Physics: Magic Angle Graphene Produces Switchable Superconductivity

When the two layers of bilayer graphene are twisted relative to each other by 1.1 degrees -- dubbed the "magic angle" -- electrons behave in a strange and extraordinary way. The effect was first theorized by UT Austin physics professor Allan MacDonald and postdoctoral researcher Rafi Bistritzer. Illustration credit: David Steadman/University of Texas at Austin.

Last year, scientists demonstrated that twisted bilayer graphene — a material made of two atom-thin sheets of carbon with a slight twist — can exhibit alternating superconducting and insulating regions. Now, a new study in the journal Nature by scientists from Spain, the U.S., China and Japan shows that superconductivity can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Feliciano Giustino Uses Quantum Mechanics to Create New Materials

Feliciano Giustino Uses Quantum Mechanics to Create New Materials

Feliciano Giustino recently joined the University of Texas at Austin faculty in the Department of Physics and is a Moncrief Chair in the Oden Institute for Computational Engineering and Sciences, where he will direct the Center for Quantum Materials Engineering. He was previously a professor in the Department of Materials at Oxford University.