Button to scroll to the top of the page.

Updates

Campus health and safety are our top priorities. Get the latest from UT on COVID-19.

Get help with Zoom and more.

News

From the College of Natural Sciences
Department of Energy Invests in High-power Laser Network, including UT Austin

Department of Energy Invests in High-power Laser Network, including UT Austin

The University of Texas at Austin with support from the U.S. Department of Energy will expand capabilities of the Texas Petawatt Laser, one of the highest-powered lasers in the world, with a broad range of applications for basic research, advanced manufacturing and medicine.

Tags:
Black Hole Swan Songs

Black Hole Swan Songs

Simulation of light emitted by a pair of supermassive black holes spiraling inward, viewed from above the plane of the disk. Credit: NASA's Goddard Space Flight Center

When scientists first detected gravitational waves, from the violent collision of two black holes 1.3 billion years in the past, the ripples in space-time made a distinctive chirp, followed by a signal like a ringing bell. (The signals actually had to be converted into frequencies we can hear.) Since that first detection in 2015, every black hole collision has sounded pretty much the same. But according to a new study based on computer simulations, black holes actually sing a more elaborate swan song.

Tags:
Predictive Science Research Gets Major Boost Thanks to the Department of Energy

Predictive Science Research Gets Major Boost Thanks to the Department of Energy

Predictive science is crucial to the prediction and modeling of extreme weather. This is a visualization of predicted storm surge on the Louisiana coast caused by Hurricane Laura, the Category 4 Atlantic hurricane that struck Texan shores earlier this year. Credit: Computational Hydraulics Group, Oden Institute.

Many of the decisions we make are now guided by computational simulations, from designing new spacecraft to predicting the spread of a pandemic. But it's not enough for a simulation model to just issue predictions. A decision-maker needs to know just how much those predictions can be trusted.

NSF-Funded Project Aims to Squeeze Larger Simulations onto Quantum Computers

NSF-Funded Project Aims to Squeeze Larger Simulations onto Quantum Computers

A trapped ion quantum computing system developed by Honeywell Quantum Solutions. Photo credit: Honeywell Quantum Solutions.

Quantum computers might someday make it possible to run simulations that are far too complex for conventional computers, enabling them for example to precisely model chemical reactions or the movement of electrons in materials, yielding better products from drugs to fertilizers to solar cells. Yet at the current pace of development, quantum computers powerful enough for these simulations may still be many years away.

Breakthrough Prize Awarded to UT Physicist Steven Weinberg

Breakthrough Prize Awarded to UT Physicist Steven Weinberg

An elite prize among scientists worldwide is being given to Steven Weinberg, a professor of physics at The University of Texas at Austin, for his "continuous leadership in fundamental physics, with broad impact across particle physics, gravity and cosmology, and for communicating science to a wider audience."

Allan MacDonald Wins Wolf Prize in Physics

Allan MacDonald Wins Wolf Prize in Physics

Allan MacDonald, a professor of physics at The University of Texas at Austin, has received the 2020 Wolf Prize in Physics for his groundbreaking work in a field known as twistronics, which holds extraordinary promise to "lead to an energy revolution," according to the Wolf Foundation announcement today.

Physicist Mark Raizen Named Fellow of AAAS

Physicist Mark Raizen Named Fellow of AAAS

The American Association for the Advancement of Science, the world's largest general scientific society, has named Mark Raizen, a professor in the Department of Physics, a 2019 AAAS Fellow.

Rethinking Brain-Inspired Computing from the Atom Up

Rethinking Brain-Inspired Computing from the Atom Up

If you wanted to deliver a package across the street and avoid being hit by a car, you could program a powerful computer to do it, equipped with sensors and hardware capable of running multiple differential equations to track the movement and speed of each car. But a young child would be capable of doing the same task with little effort, says Alex Demkov, professor of physics at The University of Texas at Austin.

Attacking Weaknesses in Killer Bacteria with Help from Glowing Beads

Attacking Weaknesses in Killer Bacteria with Help from Glowing Beads

Biofilms – tightly packed sticky blobs of many bacteria – are a huge problem in the medical world. Biofilms can form on joint replacements and medical equipment, they cause long-term infections in lungs and urinary tracts, and, according to Centers for Disease Control estimates, are responsible for 1.7 million infections in U.S. hospitals every year – and 99,000 deaths.

Twisted Physics: Magic Angle Graphene Produces Switchable Superconductivity

Twisted Physics: Magic Angle Graphene Produces Switchable Superconductivity

When the two layers of bilayer graphene are twisted relative to each other by 1.1 degrees -- dubbed the "magic angle" -- electrons behave in a strange and extraordinary way. The effect was first theorized by UT Austin physics professor Allan MacDonald and postdoctoral researcher Rafi Bistritzer. Illustration credit: David Steadman/University of Texas at Austin.

Last year, scientists demonstrated that twisted bilayer graphene — a material made of two atom-thin sheets of carbon with a slight twist — can exhibit alternating superconducting and insulating regions. Now, a new study in the journal Nature by scientists from Spain, the U.S., China and Japan shows that superconductivity can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Feliciano Giustino Uses Quantum Mechanics to Create New Materials

Feliciano Giustino Uses Quantum Mechanics to Create New Materials

Feliciano Giustino recently joined the University of Texas at Austin faculty in the Department of Physics and is a Moncrief Chair in the Oden Institute for Computational Engineering and Sciences, where he will direct the Center for Quantum Materials Engineering. He was previously a professor in the Department of Materials at Oxford University.

Katherine Freese Has Ideas to Support Detection of Dark Matter

Katherine Freese Has Ideas to Support Detection of Dark Matter

This summer the Department of Physics welcomed an astrophysicist whom Global Citizen put on a list of the "17 Top Female Scientists who have Changed the World," alongside names like Jane Goodall and Marie Curie.

New Material Holds Promise for More Secure Computing

New Material Holds Promise for More Secure Computing

When the two atomically-thin sheets of this new material are rotated slightly with respect to each other, an interference pattern known as a moiré pattern appears. This feature appears to enable Li’s new material to act as a series of single photon emitters. Credit: University of Texas at Austin.

As computers advance, encryption methods currently used to keep everything from financial transactions to military secrets secure might soon be useless, technology experts warn. Reporting today in the journal Nature, a team of physicists and engineers led by University of Texas at Austin physics professor Xiaoqin Elaine Li report they have created a material with light-emitting properties that might enable hack-proof communications, guaranteed by the laws of quantum mechanics.

New Material Might Lead to Higher Capacity Hard Drives

New Material Might Lead to Higher Capacity Hard Drives

Over the past few decades, the cost of storing data on hard disk drives (HDDs) has fallen dramatically, enabling revolutions in personal, scientific and cloud computing and allowing for storage of ever-greater amounts of data. But even as data collection continues to skyrocket, the cost-per-bit trend has been flattening out, leading to calls for new innovations in technology.

Newly Identified Gravitational Waves Include Best Pinpointed Black Hole Pair

Newly Identified Gravitational Waves Include Best Pinpointed Black Hole Pair

Numerical simulations of gravitational waves caused by the collision of two black holes. Credit: NASA/Ames Research Center/C. Henze

The scientists looking for gravitational waves report that last year they observed four additional ripples in space-time. During about a nine-month period, scientists involved with the National Science Foundation's LIGO (Laser Interferometer Gravitational-Wave Observatory) collaboration and the European-based Virgo gravitational-wave detector encountered eight gravitational waves—twice as many as previously reported—including a newly identified binary black hole that was the most precisely located in the sky to date.

Tags: