Button to scroll to the top of the page.

News

From the College of Natural Sciences
New Research Advances Fight Against Human Metapneumovirus

New Research Advances Fight Against Human Metapneumovirus

Human metapneumovirus (hMPV), a virus that infects the upper and lower respiratory systems—leading to bronchitis and pneumonia in some patients—could soon meet its medical match. A scientific team in Texas, in collaboration with biotech companies, has made recent breakthroughs in understanding the virus, and their efforts could lead to everything from the first-ever vaccines against hMPV to new, highly effective therapeutics.

Potential New Drug Target Could Boost Effectiveness of Chemotherapy Drugs

Potential New Drug Target Could Boost Effectiveness of Chemotherapy Drugs

Researchers at The University of Texas at Austin have discovered that a large family of reverse transcriptases (RTs)—enzymes that are found in all organisms and have been extensively studied for more than 50 years—have the previously unsuspected ability to repair DNA damage. The discovery makes them a potential new drug target that might be exploited to block cancer cells from developing resistance to radiation and chemotherapy drugs. The findings were published today in the journal Cell.

Enzymes in a large family called group II intron-like RTs have 3D structures that are remarkably similar, which suggests they share the ability to help repair double-strand DNA breaks. This image is a superposition of two of these enzymes: G2L4 and GsI-IIC RT. Their shared (or conserved) structures are in alternating green and gray. Credit: University of Texas at Austin.
New Era at UT Austin Begins for Famous Long-Term Evolution Experiment

New Era at UT Austin Begins for Famous Long-Term Evolution Experiment

Jeff Barrick, director of the Long-Term Evolution Experiment, examines a dish of E.coli bacteria from the LTEE. Credit: Nolan Zunk/University of Texas at Austin.
The Long-Term Evolution Experiment began back when a dozen eggs cost 65 cents, the film Rain Man topped the box office and George Michael's song "Faith" ruled the pop charts. The bacteria central to this long-running experiment—descendants of E. coli that were plucked from the wild and have spent some 75,000 generations in captivity—now live on the University of Texas at Austin campus.
Scientists Hijack Bacteria To Ease Drug Manufacturing

Scientists Hijack Bacteria To Ease Drug Manufacturing

For more affordable, sustainable drug options than we have today, the medication we take to treat high blood pressure, pain or memory loss may one day come from engineered bacteria, cultured in a vat like yogurt. And thanks to a new bacterial tool developed by scientists at The University of Texas at Austin, the process of improving drug manufacturing in bacterial cells may be coming sooner than we thought.

Jason McLellan Named Finalist for Blavatnik National Award for Young Scientists

Jason McLellan Named Finalist for Blavatnik National Award for Young Scientists

University of Texas at Austin molecular biosciences professor Jason McLellan was selected as a finalist for the 2022 Blavatnik National Awards for Young Scientists.

Lauren Ehrlich Named among The Alcalde’s Texas 10

Lauren Ehrlich Named among The Alcalde’s Texas 10

Lauren Ehrlich, associate professor of molecular biosciences, has been named one of the Texas 10 by The Alcalde, the University of Texas at Austin alumni magazine. Alumni nominate professors who inspired them and went above and beyond for their students.

Plastic-eating Enzyme Could Eliminate Billions of Tons of Landfill Waste

Plastic-eating Enzyme Could Eliminate Billions of Tons of Landfill Waste

An enzyme variant created by engineers and scientists at The University of Texas at Austin can break down environment-throttling plastics that typically take centuries to degrade in just a matter of hours to days.

Live Cell Imaging Reveals New Clues About Processes Linked to Birth Defects

Live Cell Imaging Reveals New Clues About Processes Linked to Birth Defects

John Wallingford, professor of molecular biosciences at The University of Texas at Austin, and his team used a process called live cell imaging to make observations about how a developing embryo transforms from its early ball shape into a more elongated shape with a distinct head and rear. Disruptions to this process in human embryos can lead to birth defects.

UT Biologist Awarded Prestigious Guggenheim Fellowship

UT Biologist Awarded Prestigious Guggenheim Fellowship

John Wallingford, professor of molecular biosciences at The University of Texas at Austin, has been awarded a fellowship by the John Simon Guggenheim Memorial Foundation.

New Vaccine Advances Could Help Against More Viral Illnesses

New Vaccine Advances Could Help Against More Viral Illnesses

Ching-Lin Hsieh and Jason McLellan are among the UT Austin scientists who have engineered a protein of the human metapneumovirus for use in vaccines. Credit: Vivian Abagiu

Some of the same researchers at The University of Texas at Austin who created a key to all coronavirus vaccines used in the U.S. have made a similar advance against the human metapneumovirus (hMPV), one of a handful of remaining respiratory viruses for which there is currently no vaccine.

Dried Bacteria Could Revolutionize Testing, Laboratory Science

Dried Bacteria Could Revolutionize Testing, Laboratory Science

When you think of the type of labs driving biomedical discoveries, you may envision beakers and test tubes filled with a rainbow of chemicals, where much of the magic of scientific experimentation takes place. However, those chemicals are expensive. Pure forms can be difficult to manufacture, ship and store, and they often have to be ordered in very large quantities, which creates barriers to scientific experimentation and advancement.

Gene Editing Gets Safer Thanks to Redesigned Protein

Gene Editing Gets Safer Thanks to Redesigned Protein

UT Austin researchers were surprised to discover that when Cas9 encounters a mismatch in a certain part of the DNA (red and green), instead of giving up and moving on, it has a finger-like structure (cyan) that swoops in and holds on to the DNA, making it act as if it were the correct sequence. Credit: Jack Bravo/University of Texas at Austin.

One of the grand challenges with using CRISPR-based gene editing on humans is that the molecular machinery sometimes makes changes to the wrong section of a host's genome, creating the possibility that an attempt to repair a genetic mutation in one spot in the genome could accidentally create a dangerous new mutation in another.

A New Way to Disarm Antibiotic Resistance in Deadly Bacteria

A New Way to Disarm Antibiotic Resistance in Deadly Bacteria

An antibiotic resistant bacterium (Klebsiella pneumoniae) is treated solely with the last-resort antibiotic imipenem (left); and with a combination of imipenem and a DsbA inhibitor, causing it to rupture and die (right). Image credit: Nikol Kadeřábková.

Scientists think they may have uncovered a whole new approach to fighting antibiotic-resistant bacteria, which, if successful, would help address a health crisis responsible for more deaths every year than either AIDS or malaria.

Unraveling How One of the Most Important Cell Types Form

Unraveling How One of the Most Important Cell Types Form

Scientists studying plants have uncovered a key part of the process that forms one of the most important cell types on Earth.

Dan Leahy Selected as Fellow of American Society for Biochemistry and Molecular Biology

Dan Leahy Selected as Fellow of American Society for Biochemistry and Molecular Biology

​The American Society for Biochemistry and Molecular Biology today announced that Daniel Leahy has been named among its newest class of fellows. Designation as a fellow recognizes outstanding accomplishments in research, education, mentorship and service. Leahy is the first UT Austin faculty member to be named a fellow and a member of the second-ever fellows class.