Button to scroll to the top of the page.

Updates

Campus health and safety are our top priorities. Get the latest from UT on COVID-19.

Get help with Zoom and more.

News

From the College of Natural Sciences
Our Immune Systems Blanket the SARS-CoV-2 Spike Protein with Antibodies

Our Immune Systems Blanket the SARS-CoV-2 Spike Protein with Antibodies

An analysis of blood plasma samples from people who recovered from SARS-CoV-2 infections shows that most of the antibodies circulating in the blood -- on average, about 84% -- target areas of the viral spike protein outside the receptor binding domain (RBD, green), including the N-terminal Domain (NTD, blue) and the S2 subunit (red, yellow). Illustration credit: University of Texas at Austin.

The most complete picture yet is coming into focus of how antibodies produced in people who effectively fight off SARS-CoV-2 work to neutralize the part of the virus responsible for causing infection. In the journal Science, researchers at The University of Texas at Austin describe the finding, which represents good news for designing the next generation of vaccines to protect against variants of the virus or future emerging coronaviruses.

Hepatitis C Drugs Boost Remdesivir’s Antiviral Activity Against COVID-19

Hepatitis C Drugs Boost Remdesivir’s Antiviral Activity Against COVID-19

Drugs used to treat hepatitis C render remdesivir 10 times better at inhibiting the coronavirus in cell cultures, according to new study. Illustration credit: Jenna Luecke/University of Texas at Austin.

Remdesivir is currently the only antiviral drug approved in the U.S. for treating COVID-19 patients. In a paper published this week in Cell Reports, researchers from The University of Texas at Austin, Rensselaer Polytechnic Institute (RPI) and the Icahn School of Medicine at Mount Sinai showed that four drugs used to treat hepatitis C render remdesivir 10 times better at inhibiting the coronavirus in cell cultures.

Human Trials Begin for a Low-Cost COVID-19 Vaccine to Extend Global Access

Human Trials Begin for a Low-Cost COVID-19 Vaccine to Extend Global Access

Clinical trials of the COVID-19 vaccine candidate NDV-HXP-S, which includes a key protein developed at the University of Texas at Austin, began in Thailand in March 2021. Photo courtesy of Thailand’s Government Pharmaceutical Organization (GPO).

In a major boost to efforts to combat COVID-19 globally, a vaccine that recently entered human trials in Vietnam and Thailand, and is slated for a clinical study in Brazil, holds promise for affordable vaccine manufacturing in countries currently dependent on imported vaccines. The vaccine is the result of a partnership between The University of Texas at Austin, the Icahn School of Medicine at Mount Sinai in New York and global partners interested in advancing the supply of affordable vaccines to address the pandemic.

Accurately Editing Genes in Living Cells Means Grappling with Knots in DNA

Accurately Editing Genes in Living Cells Means Grappling with Knots in DNA

Gene editing with CRISPR enzymes inside living cells could become more effective and accurate after researchers at The University of Texas at Austin unveiled how inner workings can help or hinder the process.

Finkelstein Receives Welch Foundation’s Norman Hackerman Award

Finkelstein Receives Welch Foundation’s Norman Hackerman Award

The Welch Foundation today announced that Ilya J. Finkelstein, an associate professor of molecular biosciences at The University of Texas at Austin who has been researching the coronavirus and the gene-editing tool CRISPR, will receive the 2021 Norman Hackerman Award in Chemical Research. Having already made significant scientific contributions in chemistry and biochemistry, he is being recognized as a rising star in his field.

Four Natural Sciences Faculty Receive Sloan Research Fellowships

Four Natural Sciences Faculty Receive Sloan Research Fellowships

​​Four faculty members from the University of Texas at Austin's College of Natural Sciences have received 2021 Sloan Research Fellowships, which honor outstanding early-career scientists in eight fields.

Undergraduate Research Aims to Harness the Power of Mealworms to Degrade Plastic

Undergraduate Research Aims to Harness the Power of Mealworms to Degrade Plastic

Interior of a bin with polyethylene and mealworms. Photo courtesy of Emily Samson.

​In search of a way to reduce the amount of plastic pollution an individual creates, a team of undergraduates in the UT Austin Inventors Program are exploring how mealworms, and the microbes in their guts, can naturally degrade household plastics.

Scientists Discover How Remdesivir Works to Inhibit Coronavirus

Scientists Discover How Remdesivir Works to Inhibit Coronavirus

Remdesivir is the only antiviral drug approved for use in the U.S. against COVID-19. Photo courtesy of Gilead.

More effective antiviral treatments could be on the way after research from The University of Texas at Austin sheds new light on the COVID-19 antiviral drug remdesivir, the only treatment of its kind currently approved in the U.S. for the coronavirus.

Texas Coronavirus Scientists Win Award for Research with ‘Great Societal Benefit’

Texas Coronavirus Scientists Win Award for Research with ‘Great Societal Benefit’

Jason McLellan (left) and Daniel Wrapp have been awarded the Golden Goose Award. Credit: Vivian Abagiu.

The world's largest multidisciplinary scientific society has announced that Jason McLellan, a University of Texas at Austin associate professor in the Department of Molecular Biosciences, and Daniel Wrapp, a graduate student fellow, were among seven winners of this year's Golden Goose Award. Supported by members of Congress from both parties and a coalition of businesses, universities and scientific societies since 2012, the prize this year went to scientists "whose federally funded research has had a significant impact for the response and treatment of COVID-19."

Coronavirus Mutation May Have Made It More Contagious

Coronavirus Mutation May Have Made It More Contagious

The number of virus strains present in each zip code in Houston during the second wave of COVID-19 cases in summer 2020. Number of strains is represented by a spectrum of colors from blue (0 strains) to red (50 strains). Credit: Houston Methodist/University of Texas at Austin.

A study involving more than 5,000 COVID-19 patients in Houston finds that the virus that causes the disease is accumulating genetic mutations, one of which may have made it more contagious. According to the paper published in the peer-reviewed journal mBIO, that mutation, called D614G, is located in the spike protein that pries open our cells for viral entry. It's the largest peer-reviewed study of SARS-CoV-2 genome sequences in one metropolitan region of the U.S. to date.

7 Emerging Scientific Leaders Among Recipients of Stengl-Wyer Research Support

7 Emerging Scientific Leaders Among Recipients of Stengl-Wyer Research Support

The College of Natural Sciences has recently recruited and supported top leaders among a new generation of scientists through the Stengl-Wyer Endowment – the largest endowment in the college's history. These postdoctoral scholars and graduate students are working on research projects that will promote a deeper understanding of climate change, protect natural habitats and maintain biodiversity in Texas and beyond.

Why Some Cancers May Respond Poorly to Key Drugs Discovered

Why Some Cancers May Respond Poorly to Key Drugs Discovered

Patients with BRCA1/2 mutations are at higher risk for breast, ovarian and prostate cancers that can be aggressive when they develop – and, in many cases, resistant to lifesaving drugs. Now scientists at The University of Texas at Austin and Ajou University in South Korea have identified a driver of the drug resistance that can make a life or death difference for patients with these cancers.

Antibody Test Developed for COVID-19 That is Sensitive, Specific and Scalable

Antibody Test Developed for COVID-19 That is Sensitive, Specific and Scalable

An antibody test for the virus that causes COVID-19, developed by researchers at The University of Texas at Austin in collaboration with Houston Methodist and other institutions, is more accurate and can handle a much larger number of donor samples at lower overall cost than standard antibody tests currently in use. In the near term, the test can be used to accurately identify the best donors for convalescent plasma therapy and measure how well candidate vaccines and other therapies elicit an immune response.

Researchers Discover Key Mechanism Cells Use to Harness Energy

Researchers Discover Key Mechanism Cells Use to Harness Energy

Scientists have known for some time that NAD+ (oxidized nicotinamide adenine dinucleotide), a key molecule involved in the function of all cellular life, is needed to help cells harness energy. What scientists didn't fully understand until now is how human cells compartmentalized intracellular NAD+ or that – as a new paper out today in the journal Nature suggests – the process may be able to be controlled to help address aging and diseases, from neurodegeneration to cancer.

Matching CRISPR to the Job Improves the Safety, Efficiency of the Gene-Editing Tool

Matching CRISPR to the Job Improves the Safety, Efficiency of the Gene-Editing Tool

One of the biggest scientific advances of the last decade is getting better thanks to researchers at The University of Texas at Austin; the University of California, Berkeley; and Korea University. The team has developed a new tool to help scientists choose the best available gene-editing option for a given job, making the technology called CRISPR safer, cheaper and more efficient. The tool is outlined in a paper out today in Nature Biotechnology.