Button to scroll to the top of the page.

News

From the College of Natural Sciences

Marc Airhart is the Communications Coordinator for the College of Natural Sciences. A long time member of the National Association of Science Writers, he has written for national publications including Scientific American, Mercury, The Earth Scientist, Environmental Engineer & Scientist, and StarDate Magazine. He also spent 11 years as a writer and producer for the Earth & Sky radio series. Contact me

Scientists Coax Proteins to Form Synthetic Structures with Method that Mimics Nature

Scientists Coax Proteins to Form Synthetic Structures with Method that Mimics Nature

As a proof of concept, a team of researchers at the University of Texas at Austin built tiny structures that resemble two doughnuts stacked on top of each other by applying electrical charges to specific spots on naturally occurring proteins. Credit: University of Texas at Austin.

Scientists have long dreamed of creating synthetic structures out of the same raw material that nature uses in living systems — proteins — believing such an advance would allow for the development of transformative nanomachines, for example, molecular cages that precisely deliver chemotherapy drugs to tumors or photosynthetic systems for harvesting energy from light. Now a team of biologists from The University of Texas at Austin and the University of Michigan have invented a way to build synthetic structures from proteins, and just as in nature, the method is simple and could be used for a variety of purposes.

Bacteria Help Scientists Discover Human Cancer-Causing Proteins

Bacteria Help Scientists Discover Human Cancer-Causing Proteins

Researchers genetically modified E coli bacteria to fluoresce red when DNA was damaged. Then, they overexpressed each of the bacteria’s 4,000 genes individually and determined which proteins made bacteria glow red. With these bacterial proteins as a guide, they identified more than 100 analogous human proteins that are now implicated in DNA damage and initiation of cancer. Image credit: Jun Xia.

A team led by researchers at The University of Texas at Austin and Baylor College of Medicine has applied an unconventional approach involving bacteria to discover human proteins that can lead to DNA damage and promote cancer. This could lead to new tests to identify people who are likely to develop cancer. Reported in the journal Cell, the study also proposes biological mechanisms by which these proteins can damage DNA, opening possibilities for future cancer treatments.

Evolution Used Same Genetic Formula to Turn Animals Monogamous

Evolution Used Same Genetic Formula to Turn Animals Monogamous

In many non-monogamous species, females provide all or most of the offspring care. In monogamous species, parental care is often shared. In these frogs, parental care includes transporting tadpoles one by one after hatching to small pools of water. In the non-monogamous strawberry poison frog (Oophaga pumilio, left) moms perform this task; however, in the monogamous mimic poison frog (Ranitomeya imitator, right) this is dad's job. Credit: Yusan Yan and James Tumulty.

Why are some animals committed to their mates and others are not? According to a new study led by researchers at The University of Texas at Austin that looked at 10 species of vertebrates, evolution used a kind of universal formula for turning non-monogamous species into monogamous species — turning up the activity of some genes and turning down others in the brain.

UT Austin Chemist Livia Eberlin Named a Moore Inventor Fellow

UT Austin Chemist Livia Eberlin Named a Moore Inventor Fellow

Livia Eberlin has been named a Moore Inventor Fellow. Photo courtesy of Moore Foundation.

A foundation that has set a goal this decade of identifying 50 inventors who will shape the next 50 years has added its second University of Texas at Austin faculty member to the list. The Gordon and Betty Moore Foundation announced Livia Eberlin, assistant professor in the Department of Chemistry, is one of this year's five Moore Inventor fellows.

Mathematician Receives Max Planck-Humboldt Medal

Mathematician Receives Max Planck-Humboldt Medal

Mathematician Sam Payne has been awarded a Max Planck-Humboldt Medal. Photo credit: Vivian Abagiu.

Sam Payne, professor of mathematics at the University of Texas at Austin, has been awarded one of this year's two Max Planck-Humboldt Medals. The medal is financed by the German government and awarded jointly by the Max Planck Society and the Alexander von Humboldt Foundation.

Giant Flightless Birds Were Nocturnal and Possibly Blind

Giant Flightless Birds Were Nocturnal and Possibly Blind

A new analysis of the skulls of extinct elephant birds show they were nocturnal and possibly blind. Credit: John Maisano/University of Texas at Austin.

If you encountered an elephant bird today, it would be hard to miss. Measuring in at over 10 feet tall, the extinct avian is the largest bird known to science. However, while you looked up in awe, it's likely that the big bird would not be looking back.

UT Austin Selected for New Nationwide High-Intensity Laser Network

UT Austin Selected for New Nationwide High-Intensity Laser Network

The Texas Petawatt Laser, among the most powerful in the U.S., will be part of a new national network funded by the Dept. of Energy, named LaserNetUS. Credit: University of Texas at Austin.

The University of Texas at Austin will be a key player in LaserNetUS, a new national network of institutions operating high-intensity, ultrafast lasers. The overall project, funded over two years with $6.8 million from the U.S. Department of Energy's Office of Fusion Energy Sciences, aims to help boost the country's global competitiveness in high-intensity laser research.

Tags:
‘Honey, I Shrunk the Cell Culture’: Scientists Use Shrink Ray for Biomedical Research

‘Honey, I Shrunk the Cell Culture’: Scientists Use Shrink Ray for Biomedical Research

Using a new kind of "shrink ray", UT Austin scientists can alter the surface of a hydrogel pad in real time, creating grooves (blue) and other patterns without disturbing living cells, such as this fibroblast cell (red) that models the behavior of human skin cells. Rapid appearance of such surface features during cell growth can mimic the dynamic conditions experienced during development and repair of tissue (e.g., in wound healing and nerve regrowth). Credit: Jason Shear/University of Texas at Austin.

From "Fantastic Voyage" to "Despicable Me," shrink rays have been a science-fiction staple on screen. Now chemists at The University of Texas at Austin have developed a real shrink ray that can change the size and shape of a block of gel-like material while human or bacterial cells grow on it. This new tool holds promise for biomedical researchers, including those seeking to shed light on how to grow replacement tissues and organs for implants.

New Protein Sequencing Method Could Transform Biological Research

New Protein Sequencing Method Could Transform Biological Research

An ultra-sensitive new method for identifying the series of amino acids in individual proteins (a.k.a. protein sequencing) can accelerate research on biomarkers for cancer and other diseases. Credit: David Steadman/University of Texas at Austin.

A team of researchers at The University of Texas at Austin has demonstrated a new way to sequence proteins that is much more sensitive than existing technology, identifying individual protein molecules rather than requiring millions of molecules at a time. The advance could have a major impact in biomedical research, making it easier to reveal new biomarkers for the diagnosis of cancer and other diseases, as well as enhance our understanding of how healthy cells function.

A Big Week in Science (Audio)

A Big Week in Science (Audio)

The first full week of October is like a science-lover's World Series: Each year, the spotlight falls on high-impact science, when day after day, a series of Nobel Prizes and other prestigious awards are announced one after another. [Update: In 2019, a UT Austin faculty member in the Cockrell School of Engineering, John Goodenough, was awarded the Nobel Prize for Chemistry during Science's Big Week.]