Button to scroll to the top of the page.

News

From the College of Natural Sciences
New Material Might Lead to Higher Capacity Hard Drives

New Material Might Lead to Higher Capacity Hard Drives

Over the past few decades, the cost of storing data on hard disk drives (HDDs) has fallen dramatically, enabling revolutions in personal, scientific and cloud computing and allowing for storage of ever-greater amounts of data. But even as data collection continues to skyrocket, the cost-per-bit trend has been flattening out, leading to calls for new innovations in technology.

Scientists Coax Proteins to Form Synthetic Structures with Method that Mimics Nature

Scientists Coax Proteins to Form Synthetic Structures with Method that Mimics Nature

As a proof of concept, a team of researchers at the University of Texas at Austin built tiny structures that resemble two doughnuts stacked on top of each other by applying electrical charges to specific spots on naturally occurring proteins. Credit: University of Texas at Austin.

Scientists have long dreamed of creating synthetic structures out of the same raw material that nature uses in living systems — proteins — believing such an advance would allow for the development of transformative nanomachines, for example, molecular cages that precisely deliver chemotherapy drugs to tumors or photosynthetic systems for harvesting energy from light. Now a team of biologists from The University of Texas at Austin and the University of Michigan have invented a way to build synthetic structures from proteins, and just as in nature, the method is simple and could be used for a variety of purposes.

Thousands of Stars Observed Turning into Crystals for the First Time

Thousands of Stars Observed Turning into Crystals for the First Time

White dwarf star in the process of solidifying. Credit: University of Warwick/Mark Garlick.

The first direct evidence of crystallized white dwarf stars has been discovered by an international team of researchers that includes an astronomer at The University of Texas at Austin. Predicted half a century ago, the direct evidence of these stars will be published tomorrow in the journal Nature.

Flu Season Forecasts Could Be More Accurate with Access to Health Care Companies’ Data

Flu Season Forecasts Could Be More Accurate with Access to Health Care Companies’ Data

In an era when for-profit companies collect a wealth of data about us, new research from The University of Texas at Austin shows that data collected by health care companies could — if made available to researchers and public health agencies — enable more accurate forecasts of when the next flu season will peak, how long it will last and how many people will get sick.

New Nerve Gas Detector Built with Legos and a Smartphone

New Nerve Gas Detector Built with Legos and a Smartphone

Researchers at The University of Texas at Austin have designed a way to sense dangerous chemicals using, in part, a simple rig consisting of a smartphone and a box made from Lego bricks, which could help first responders and scientists in the field identify deadly and difficult-to-detect nerve agents such as VX and sarin. The new methodology described in a paper published Wednesday in the open-access journal ACS Central Science combines a chemical sensor with photography to detect and identify different nerve agents — odorless, tasteless chemical weapons that can cause severe illness and death, sometimes within minutes.

DNA Barcodes That Reliably Work: A Game-Changer for Biomedical Research

DNA Barcodes That Reliably Work: A Game-Changer for Biomedical Research

This illustration shows the most common structure of DNA found in a cell, called B-DNA. Credit: Richard Wheeler (Zephyris). Used under the Creative Commons Attribution-ShareAlike 3.0 license.

In the same way that barcodes on your groceries help stores know what's in your cart, DNA barcodes help biologists attach genetic labels to biological molecules to do their own tracking during research, including of how a cancerous tumor evolves, how organs develop or which drug candidates actually work. Unfortunately with current methods, many DNA barcodes have a reliability problem much worse than your corner grocer's. They contain errors about 10 percent of the time, making interpreting data tricky and limiting the kinds of experiments that can be reliably done.

A Change in Bacteria’s Genetic Code Holds Promise of Longer-Lasting Drugs

A Change in Bacteria’s Genetic Code Holds Promise of Longer-Lasting Drugs

An alteration in the genetic code of bacteria holds promise for protein therapeutics. Credit: University of Texas at Austin.

By altering the genetic code in bacteria, researchers at The University of Texas at Austin have demonstrated a method to make therapeutic proteins more stable, an advance that would improve the drugs' effectiveness and convenience, leading to smaller and less frequent doses of medicine, lower health care costs and fewer side effects for patients with cancer and other diseases.

Two Postdocs Receive Fellowships to Study Extrasolar Planets

Two Postdocs Receive Fellowships to Study Extrasolar Planets

Two postdoctoral fellows in the Department of Astronomy at The University of Texas at Austin have received the 51 Pegasi b Fellowship from the Heising-Simons Foundation.

Promise of New Antibiotics Lies with Shackling Tiny Toxic Tetherballs to Bacteria

Promise of New Antibiotics Lies with Shackling Tiny Toxic Tetherballs to Bacteria

Biologists at The University of Texas at Austin have developed a method for rapidly screening hundreds of thousands of potential drugs for fighting infections, an innovation that holds promise for combating the growing scourge of antibiotic-resistant bacteria. The method involves engineering bacteria to produce and test molecules that are potentially toxic to themselves.

New Technique Enables Safer Gene-Editing Therapy Using CRISPR

New Technique Enables Safer Gene-Editing Therapy Using CRISPR

A CRISPR protein targets specific sections of DNA and cuts them. Scientists have turned this natural defense mechanism in bacteria into a tool for gene editing. Illustration: Jenna Luecke and David Steadman/Univ. of Texas at Austin.

Scientists from The University of Texas at Austin took an important step toward safer gene-editing cures for life-threatening disorders, from cancer to HIV to Huntington's disease, by developing a technique that can spot editing mistakes a popular tool known as CRISPR makes to an individual's genome. The research appears today in the journal Cell.