Button to scroll to the top of the page.

News

From the College of Natural Sciences
New Flu Drug Informed by UT Austin Professor's 40-year-old Basic Research

New Flu Drug Informed by UT Austin Professor's 40-year-old Basic Research

Last year, Texas saw a particularly deadly flu season. Now, there is a new Federal Drug Administration-approved treatment, Xofluza, designed to catch the flu in its early stages and stop it from spreading. The drug is thanks in large part to professor emeritus Robert Krug's basic research, undertaken almost 40 years ago.

‘Honey, I Shrunk the Cell Culture’: Scientists Use Shrink Ray for Biomedical Research

‘Honey, I Shrunk the Cell Culture’: Scientists Use Shrink Ray for Biomedical Research

Using a new kind of "shrink ray", UT Austin scientists can alter the surface of a hydrogel pad in real time, creating grooves (blue) and other patterns without disturbing living cells, such as this fibroblast cell (red) that models the behavior of human skin cells. Rapid appearance of such surface features during cell growth can mimic the dynamic conditions experienced during development and repair of tissue (e.g., in wound healing and nerve regrowth). Credit: Jason Shear/University of Texas at Austin.

From "Fantastic Voyage" to "Despicable Me," shrink rays have been a science-fiction staple on screen. Now chemists at The University of Texas at Austin have developed a real shrink ray that can change the size and shape of a block of gel-like material while human or bacterial cells grow on it. This new tool holds promise for biomedical researchers, including those seeking to shed light on how to grow replacement tissues and organs for implants.

Scientists Discover Why Some Bacteria Turn Bad

Scientists Discover Why Some Bacteria Turn Bad

Enterotoxigenic E. coli (ETEC) bacteria approach intestinal epithelial cells during human infection. When in close proximity to the host epithelium ETEC senses oxygen seeping (blue) from intestinal epithelial cells to increase expression of adhesins and secreted toxins (magenta). Image Credit: Brad Gilleland

Every year, millions of people have vacations and business trips ruined when they succumb to "traveler's diarrhea" during their journeys. A major cause of traveler's diarrhea is bacteria called Enterotoxigenic E. coli, or ETEC. A joint effort between scientists at the University of Georgia and the University of Texas at Austin has discovered what triggers ETEC to produce dangerous toxins in the body. They are using this information in an effort to develop a preventive vaccine for travelers.

Flu Season Forecasts Could Be More Accurate with Access to Health Care Companies’ Data

Flu Season Forecasts Could Be More Accurate with Access to Health Care Companies’ Data

In an era when for-profit companies collect a wealth of data about us, new research from The University of Texas at Austin shows that data collected by health care companies could — if made available to researchers and public health agencies — enable more accurate forecasts of when the next flu season will peak, how long it will last and how many people will get sick.

Fighting Hepatitis C Virus, Using Clues from What Killed Bevo XIV

Fighting Hepatitis C Virus, Using Clues from What Killed Bevo XIV

Enter your custom HTML codes in this section ...

And other adventures in animal viruses teaching us about human disease.

A Century After 1918 Flu, A Virus that Still Surprises

A Century After 1918 Flu, A Virus that Still Surprises

This month marks the centennial of the first case of one of the world's deadliest flu outbreaks, which was reported on a Kansas army base. It is estimated that the 1918 flu infected 500 million people around the world and killed 50-100 million. With the 100th anniversary, we sat down with graduate student Spencer Fox, who studies the flu virus and flu pandemics.


The 40 Year-old Discovery Behind A Promising New Flu Drug

The 40 Year-old Discovery Behind A Promising New Flu Drug

A discovery that Robert Krug, a University of Texas at Austin molecular biologist, made decades ago has led to the development of a new drug to fight flu infections more effectively than existing drug treatments.

Promise of New Antibiotics Lies with Shackling Tiny Toxic Tetherballs to Bacteria

Promise of New Antibiotics Lies with Shackling Tiny Toxic Tetherballs to Bacteria

Biologists at The University of Texas at Austin have developed a method for rapidly screening hundreds of thousands of potential drugs for fighting infections, an innovation that holds promise for combating the growing scourge of antibiotic-resistant bacteria. The method involves engineering bacteria to produce and test molecules that are potentially toxic to themselves.

Ancient Enzyme Could Boost Power of Liquid Biopsies to Detect and Profile Cancers

Ancient Enzyme Could Boost Power of Liquid Biopsies to Detect and Profile Cancers

Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University of Texas at Austin are developing a new tool for liquid biopsy that could soon provide doctors with a more complete picture of an individual's disease, improving their chances of finding the best treatment, while also sparing patients the pain, inconvenience and long wait times associated with surgical biopsies.

Cracking the Code: Why Flu Pandemics Come At the End of Flu Season

Cracking the Code: Why Flu Pandemics Come At the End of Flu Season

You might expect that the risk of a new flu pandemic — or worldwide disease outbreak — is greatest at the peak of the flu season in winter, when viruses are most abundant and most likely to spread. Instead, all six flu pandemics that have occurred since 1889 emerged in spring and summer months. And that got some University of Texas at Austin scientists wondering, why is that?