Button to scroll to the top of the page.

News

From the College of Natural Sciences
This tag contain 1 private blog which isn't listed here.
UT Austin Chemist Livia Eberlin Named a Moore Inventor Fellow

UT Austin Chemist Livia Eberlin Named a Moore Inventor Fellow

Livia Eberlin has been named a Moore Inventor Fellow. Photo courtesy of Moore Foundation.

A foundation that has set a goal this decade of identifying 50 inventors who will shape the next 50 years has added its second University of Texas at Austin faculty member to the list. The Gordon and Betty Moore Foundation announced Livia Eberlin, assistant professor in the Department of Chemistry, is one of this year's five Moore Inventor fellows.

New Flu Drug Informed by UT Austin Professor's 40-year-old Basic Research

New Flu Drug Informed by UT Austin Professor's 40-year-old Basic Research

Last year, Texas saw a particularly deadly flu season. Now, there is a new Federal Drug Administration-approved treatment, Xofluza, designed to catch the flu in its early stages and stop it from spreading. The drug is thanks in large part to professor emeritus Robert Krug's basic research, undertaken almost 40 years ago.

‘Honey, I Shrunk the Cell Culture’: Scientists Use Shrink Ray for Biomedical Research

‘Honey, I Shrunk the Cell Culture’: Scientists Use Shrink Ray for Biomedical Research

Using a new kind of "shrink ray", UT Austin scientists can alter the surface of a hydrogel pad in real time, creating grooves (blue) and other patterns without disturbing living cells, such as this fibroblast cell (red) that models the behavior of human skin cells. Rapid appearance of such surface features during cell growth can mimic the dynamic conditions experienced during development and repair of tissue (e.g., in wound healing and nerve regrowth). Credit: Jason Shear/University of Texas at Austin.

From "Fantastic Voyage" to "Despicable Me," shrink rays have been a science-fiction staple on screen. Now chemists at The University of Texas at Austin have developed a real shrink ray that can change the size and shape of a block of gel-like material while human or bacterial cells grow on it. This new tool holds promise for biomedical researchers, including those seeking to shed light on how to grow replacement tissues and organs for implants.

New Protein Sequencing Method Could Transform Biological Research

New Protein Sequencing Method Could Transform Biological Research

An ultra-sensitive new method for identifying the series of amino acids in individual proteins (a.k.a. protein sequencing) can accelerate research on biomarkers for cancer and other diseases. Credit: David Steadman/University of Texas at Austin.

A team of researchers at The University of Texas at Austin has demonstrated a new way to sequence proteins that is much more sensitive than existing technology, identifying individual protein molecules rather than requiring millions of molecules at a time. The advance could have a major impact in biomedical research, making it easier to reveal new biomarkers for the diagnosis of cancer and other diseases, as well as enhance our understanding of how healthy cells function.

Four to Receive Major Awards from Chemical Societies

Four to Receive Major Awards from Chemical Societies

Four chemists (from left to right): Eric Anslyn, Jennifer Brodbelt, Hung-Wen (Ben) Liu, Jonathan Sessler receive major awards. Image Credit: University of Texas at Austin

Four UT Austin faculty members have won major awards for 2019 from the American Chemical Society (ACS) and the International Conference on Calixarenes for their contributions to an array of research areas.

Of Fruit Flies, Nobel Prizes and Genetic Discoveries that Change the World (Audio)

Of Fruit Flies, Nobel Prizes and Genetic Discoveries that Change the World (Audio)

Last year, University of Texas at Austin alumnus Michael Young won the Nobel prize in physiology or medicine for discovering the molecular mechanism behind circadian rhythms. Circadian clocks are critical for the health of all living things, acting as the internal timekeepers in plants and animals that help to synchronize functions like eating and sleeping with our planet's daily rhythm of light and dark.

Making Cancer’s Metabolism More Normal Blocks Drug Resistance

Making Cancer’s Metabolism More Normal Blocks Drug Resistance

Updated on August 31, 2018: This release was updated to correct mistakes in descriptions of the way cancer cells develop drug resistance and the way that anti-cancer drug DCA affects the metabolism of cancer cells.

The chemical structure of C1, a drug combining two active elements: Doxorubicin (Dox), a powerful cancer chemotherapy agent that's been used for decades; and a dichloroacetic acid (DCA) subunit, which reverses a cell's metabolism to aerobic. Credit: University of Texas at Austin

A new drug lead shows promise that it could reduce the size of cancerous tumors much more effectively than current treatments.

Fighting Hepatitis C Virus, Using Clues from What Killed Bevo XIV

Fighting Hepatitis C Virus, Using Clues from What Killed Bevo XIV

Enter your custom HTML codes in this section ...

And other adventures in animal viruses teaching us about human disease.

Which Mental Superpower Would You Choose? (Audio)

Which Mental Superpower Would You Choose? (Audio)

What if people who lost a particular brain function—say, an Alzheimer's patient who can no longer make new memories—had the same option as many people who've lost limbs or other body parts—the chance to use technology to supplement what's no longer there? Or what if you could boost a healthy person's brain, essentially giving them mental superpowers, like the ability to become a Kung Fu master by downloading new skills directly to your brain?

AIDS Research by Alum Left Lasting Impact

AIDS Research by Alum Left Lasting Impact

André "Andy" Nahmias in 1948, with an Alexandria, Egypt newspaper, mentioning his scholarly pursuits at UT Austin.

André Nahmias (BA '50, MA '52) first encountered what he calls "the ecstasy of discovery" when he was a University of Texas at Austin student. In the intervening decades as an infectious disease research pediatrician, he made a number of discoveries that benefited people with various bacterial and viral infections.