Button to scroll to the top of the page.

Updates

News

From the College of Natural Sciences
COVID-19 Vaccine Innovation Could Dramatically Speed Up Worldwide Production

COVID-19 Vaccine Innovation Could Dramatically Speed Up Worldwide Production

Jason S. McLellan, associate professor of molecular biosciences, left, and graduate student Daniel Wrapp, right, work in the McLellan Lab at The University of Texas at Austin Monday Feb. 17, 2020.

Responding to a need to quickly develop billions of doses of lifesaving COVID-19 vaccines, a scientific team at The University of Texas at Austin has successfully redesigned a key protein from the coronavirus, and the modification could enable much faster and more stable production of vaccines worldwide.

COVID-19 Vaccine Candidate with UT Ties Arrived Quickly After Years in the Making

COVID-19 Vaccine Candidate with UT Ties Arrived Quickly After Years in the Making

From left: Jason S. McLellan, associate professor of molecular biosciences, Daniel Wrapp, graduate student, and Nianshuang Wang, research associate, pose for a photo in the McLellan Lab at The University of Texas at Austin Monday Feb. 17, 2020. Credit: Vivian Abagiu.

When the first COVID-19 vaccine trial in the U.S. began on March 16, history was being made. Never before had a potential vaccine been developed and produced for human trials so quickly—just 66 days since scientists published the genome sequence of the virus that causes the disease. After news this week that Phase 1 of the vaccine's trial yielded promising results, the same candidate will enter the final phase of human trials later this month. This blindingly fast effort was only possible because a group of scientists and their partners in industry had already invested years in laying the groundwork.

Brain’s Immune Cells are a Central Driver of Alcohol Use Disorder

Brain’s Immune Cells are a Central Driver of Alcohol Use Disorder

The brain's primary immune cells play a fundamental role in alcohol use disorder, according to a new study from Scripps Research and The University of Texas at Austin. The scientists are the first to link these cells—known as microglia—to the molecular, cellular and behavioral changes that promote the increased drinking that's associated with alcohol dependence.

Antibodies from Llamas Could Help in Fight Against COVID-19

Antibodies from Llamas Could Help in Fight Against COVID-19

The hunt for an effective treatment for COVID-19 has led one team of researchers to find an improbable ally for their work: a llama named Winter. The team — from The University of Texas at Austin, the National Institutes of Health and Ghent University in Belgium — reports their findings about a potential avenue for a coronavirus treatment involving llamas on May 5 in the journal Cell.

Breakthrough in Coronavirus Research Results in New Map to Support Vaccine Design

Breakthrough in Coronavirus Research Results in New Map to Support Vaccine Design

Researchers from The University of Texas at Austin and the National Institutes of Health have made a critical breakthrough toward developing a vaccine for the 2019 novel coronavirus by creating the first 3D atomic scale map of the part of the virus that attaches to and infects human cells.

Graduate Researcher Studies Cells that Fight Autoimmunity

Graduate Researcher Studies Cells that Fight Autoimmunity

T-cells are crucial to our immune systems, recognizing viruses, bacterial infections and even cancer cells and triggering immune responses that help kill off these and other dangerous invaders.

Bacteria Engineered to Protect Bees from Pests and Pathogens

Bacteria Engineered to Protect Bees from Pests and Pathogens

A Varroa mite, a common pest that can weaken bees and make them more susceptible to pathogens, feeds on a honey bee. Photo credit: Alex Wild/University of Texas at Austin.

Scientists from The University of Texas at Austin report in the journal Science that they have developed a new strategy to protect honey bees from a deadly trend known as colony collapse: genetically engineered strains of bacteria.

Twin Astronomer Probes ‘DNA’ of Twin Stars to Reveal Family History of Milky Way

Twin Astronomer Probes ‘DNA’ of Twin Stars to Reveal Family History of Milky Way

Astronomer Keith Hawkins (left), an assistant professor at The University of Texas at Austin, is pictured with twin brother Kevin Hawkins. Credit: Rob Hardin

Twin stars appear to share chemical "DNA" that could help scientists map the history of the Milky Way galaxy, according to new research by astronomer Keith Hawkins of The University of Texas at Austin accepted for publication in The Monthly Notices of the Royal Astronomical Society.

Graduate Student Uncovers Mystery about Bar-Headed Geese

Graduate Student Uncovers Mystery about Bar-Headed Geese

Bar-headed geese have long been an interest of researchers for their unique ability to survive in a variety of altitudes in their annual migration patterns. In the span of 8 to 12 hours, bar-headed geese experience an elevation change of over 26,000 feet as they travel from the Himalayas to the Tibetan highlands in China and Mongolia.

Graduate Students Receive Department of Energy Fellowships

Graduate Students Receive Department of Energy Fellowships

Graduate students Albina Khasanova and Emily Raulerson received research fellowships from the Department of Energy.

Two graduate students from the University of Texas at Austin, Albina Khasanova and Emily Raulerson, received fellowships from the Department of Energy to carry out research in one of 12 DOE national laboratories.