Button to scroll to the top of the page.

News

From the College of Natural Sciences
Giant Flightless Birds Were Nocturnal and Possibly Blind

Giant Flightless Birds Were Nocturnal and Possibly Blind

A new analysis of the skulls of extinct elephant birds show they were nocturnal and possibly blind. Credit: John Maisano/University of Texas at Austin.

If you encountered an elephant bird today, it would be hard to miss. Measuring in at over 10 feet tall, the extinct avian is the largest bird known to science. However, while you looked up in awe, it's likely that the big bird would not be looking back.

New Protein Sequencing Method Could Transform Biological Research

New Protein Sequencing Method Could Transform Biological Research

An ultra-sensitive new method for identifying the series of amino acids in individual proteins (a.k.a. protein sequencing) can accelerate research on biomarkers for cancer and other diseases. Credit: David Steadman/University of Texas at Austin.

A team of researchers at The University of Texas at Austin has demonstrated a new way to sequence proteins that is much more sensitive than existing technology, identifying individual protein molecules rather than requiring millions of molecules at a time. The advance could have a major impact in biomedical research, making it easier to reveal new biomarkers for the diagnosis of cancer and other diseases, as well as enhance our understanding of how healthy cells function.

Two Studies Shed Light on How Complex CRISPR Systems Work

Two Studies Shed Light on How Complex CRISPR Systems Work

In a pair of papers out this week, scientists at the University of Texas at Austin made new discoveries about a remarkable naturally occurring system known as CRISPR.

Math Graduate Students Place Top 10 in International Student Paper Competition

Math Graduate Students Place Top 10 in International Student Paper Competition

From left to right: Ioakeim Ampatzoglou, Nataša Pavlović, Matthew Rosenzweig

At a conference of the American Institute of Mathematical Sciences (AIMS) in Taipei, Taiwan in July, Matthew Rosenzweig was awarded second place and Ioakeim Ampatzoglou received an honorable mention in the Student Paper Competition, which named ten finalists. Both are graduate students of UT Austin mathematics professor Nataša Pavlović.

Scientists Discover Why Some Bacteria Turn Bad

Scientists Discover Why Some Bacteria Turn Bad

Enterotoxigenic E. coli (ETEC) bacteria approach intestinal epithelial cells during human infection. When in close proximity to the host epithelium ETEC senses oxygen seeping (blue) from intestinal epithelial cells to increase expression of adhesins and secreted toxins (magenta). Image Credit: Brad Gilleland

Every year, millions of people have vacations and business trips ruined when they succumb to "traveler's diarrhea" during their journeys. A major cause of traveler's diarrhea is bacteria called Enterotoxigenic E. coli, or ETEC. A joint effort between scientists at the University of Georgia and the University of Texas at Austin has discovered what triggers ETEC to produce dangerous toxins in the body. They are using this information in an effort to develop a preventive vaccine for travelers.

Common Weed Killer Linked to Bee Deaths

Common Weed Killer Linked to Bee Deaths

Honey bee. Credit: Alex Wild/University of Texas at Austin

The world's most widely used weed killer may also be indirectly killing bees. New research from The University of Texas at Austin shows that honey bees exposed to glyphosate, the active ingredient in Roundup, lose some of the beneficial bacteria in their guts and are more susceptible to infection and death from harmful bacteria.

How to Make the Gene-Editing Tool CRISPR Work Even Better

How to Make the Gene-Editing Tool CRISPR Work Even Better

Among the most significant scientific advances in recent years are the discovery and development of new ways to genetically modify living things using a fast and affordable technology called CRISPR. Now scientists at The University of Texas at Austin say they've identified an easy upgrade for the technology that would lead to more accurate gene editing with increased safety that could open the door for gene editing safe enough for use in humans.

New Nerve Gas Detector Built with Legos and a Smartphone

New Nerve Gas Detector Built with Legos and a Smartphone

Researchers at The University of Texas at Austin have designed a way to sense dangerous chemicals using, in part, a simple rig consisting of a smartphone and a box made from Lego bricks, which could help first responders and scientists in the field identify deadly and difficult-to-detect nerve agents such as VX and sarin. The new methodology described in a paper published Wednesday in the open-access journal ACS Central Science combines a chemical sensor with photography to detect and identify different nerve agents — odorless, tasteless chemical weapons that can cause severe illness and death, sometimes within minutes.

Could a Digital Version of this Part of the Brain Be Coming Soon?

Could a Digital Version of this Part of the Brain Be Coming Soon?

The cerebellum (red) directs many of the movements we make often, yet don’t have to think about. Photo credit: Database Center for Life Science. Used via Creative Commons Attribution-Share Alike 2.1 Japan license.

For decades, Michael Mauk, a neuroscientist at the University of Texas at Austin, has been developing a computer simulation of the part of our brains called the cerebellum that directs many of the movements we make often, yet don't have to think about, like walking or picking up a glass of water.

New ‘Nanotweezers’ Open Door to Innovations in Medicine, Mobile Tech

New ‘Nanotweezers’ Open Door to Innovations in Medicine, Mobile Tech

It's difficult to conceptualize a world where humans could casually manipulate nanoscale objects at will or even control their own biological matter at a cellular level with light.