News

From the College of Natural Sciences
Project Explores Fate of Coral Reefs and Related Life

Project Explores Fate of Coral Reefs and Related Life

An international team of coral experts, including Misha Matz, an associate professor of integrative biology at The University of Texas at Austin, have published a set of urgent research recommendations, related to the ability of coral to respond to rapid environmental change caused by climate change.

Periodic Table of Ecological Niches Could Aid in Predicting Effects of Climate Change

Periodic Table of Ecological Niches Could Aid in Predicting Effects of Climate Change

A Thorny Devil (Moloch horridus) in the reptile house at Alice Springs Desert Park, Alice Springs, Australia. Credit: Stu’s Images. Used via a Creative Commons Attribution-Share Alike 4.0 International license.

A group of ecologists has started creating a periodic table of ecological niches similar to chemistry's periodic table. And just as chemists have used their periodic table as a point of reference to understand relationships among elements, the emerging table for ecologists shows relationships over time among animals, plants and their environments — acting as a critical resource for scientists seeking to understand how a warming climate may be spurring changes in species around the globe.

Ancient Microbes Folded their DNA Similarly to Modern Life Forms

Ancient Microbes Folded their DNA Similarly to Modern Life Forms

Archaea wrap their DNA (yellow) around proteins called histones (blue). The wrapped structure bears an uncanny resemblance to the eukaryotic nucleosome, a bundle of eight histone proteins with DNA spooled around it. But unlike eukaryotes, archaea wind their DNA around just one histone protein, and form a long, twisting structure called a superhelix. Credit: Francesca Mattiroli

As life evolved on Earth, from simple one-celled microbes to complex plants, animals and humans, their DNA grew. And that created a problem: how do you pack more and more DNA into roughly the same-sized cellular compartment? Life's solution: fold it up into a ball. Reporting in the August 10 edition of the journal Science, researchers have discovered that microbes called archaea started folding their DNA in a way very similar to that of modern plants and animals, long before complex life evolved.

Frogs Illustrate the Creative Destruction of Mass Extinctions

Frogs Illustrate the Creative Destruction of Mass Extinctions

A tree frog (genus Boophis) found on Madagascar and Mayotte Island, off the Southeast coast of Africa. Credit: Brian Freiermuth/Univ. of Florida

Until now, biologists have struggled to reconstruct an accurate family tree for frogs. Based on fossils and limited genetic data, it appeared that most modern frog species popped up at a slow and steady pace from about 150 million to 66 million years ago. New research shows that a mass extinction 66 million years ago sparked an explosion of new frog species.

Outnumbered and on Others’ Turf, Misfits Sometimes Thrive

Outnumbered and on Others’ Turf, Misfits Sometimes Thrive

Two male sticklebacks of the same age—one from a stream (top) and one from a lake (bottom)—are each highly adapted to their own local environment. According to Bolnick, apart from a dramatic difference in size, the fish also differ in immune traits, body shape, armor to defend against predators, and “basically anything we can think to measure.” Photo credit: Daniel Berner.

It's hard being a misfit: say, a Yankees fan in a room full of Red Sox fans or a vegetarian at a barbecue joint. Evolutionary biologists have long assumed that's pretty much how things work in nature too. Animals that wander into alien environments, surrounded by better-adapted locals, will struggle. But a team of researchers from The University of Texas at Austin was surprised to find that sometimes, misfits can thrive among their much more numerous native cousins.

International Synthetic Biology Team to Create an Ancient Cell

International Synthetic Biology Team to Create an Ancient Cell

With funding from the highly competitive Human Frontier Science Program, an international team including The University of Texas at Austin's Andrew Ellington plans to unravel billions of years of evolution to create an ancient version of a cell. 

Social Bees Have Kept Their Gut Microbes for 80 Million Years

Social Bees Have Kept Their Gut Microbes for 80 Million Years

About 80 million years ago, a group of bees began exhibiting social behavior, which includes raising young together, sharing food resources and defending their colony. Today, their descendants—honey bees, stingless bees and bumble bees—carry stowaways from their ancient ancestors: five species of gut bacteria that have evolved along with the host bees.

Genetic Signatures Reveal Environment Where Bacteria Evolved

Genetic Signatures Reveal Environment Where Bacteria Evolved

Just as the fossil record reveals clues about the conditions in which prehistoric animals and plants once lived, newly discovered genetic signatures in bacterial evolution may one day allow hospitals, doctors and scientists to know more about the environment where a bacterial infection originated.

Experts Testify on Evolution Curriculum

Experts Testify on Evolution Curriculum

Some UT Austin graduate students and faculty testified in front of the Texas State Board of Education as board members deliberated about language in high school science curriculum pertaining to evolution.

Tags:
Discovery of New Microbes Sheds Light on How Complex Life Arose

Discovery of New Microbes Sheds Light on How Complex Life Arose

An international team of scientists, including researchers from Uppsala University in Sweden, The University of Texas at Austin and elsewhere, discovered several new microbes carrying genes that until now were thought to be unique to a group of more complex life forms including humans. This finding supports a decades-old hypothesis that complex life first arose from the merger of two simpler life forms.